Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.016
Filtrar
1.
Methods Mol Biol ; 2782: 159-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622400

RESUMO

Regulatory B (Breg) cells have been demonstrated to play an important role in the inhibition of a wide range of immunological responses, and they are absent or malfunction in autoimmune diseases like lupus. Breg cells can control immunological responses and keep the immune system in a balanced state by releasing immunosuppressive cytokines such as transforming growth factor-beta (TGF-ß) and interleukin-10 (IL-10), which in turn promote regulatory T (Treg) cells and reduce effector T cell responses. Breg cells have also been linked to the modulation of cancer immunity. Due to their immunosuppressive role, in the context of cancer, Breg cells aid in tumor immune evasion and promote tumor progression. Nonetheless, it has been established that Breg cells are involved in both cancer immunity and autoimmunity, and their characterizations beyond surface markers, for example, on the transcriptomic level, are essential for our understanding of Breg biology in health and disease. In this chapter, using lupus-prone MRL/lpr mice, we describe a Breg cell isolation protocol for the purpose of single-cell RNA sequencing analysis.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Neoplasias , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Citocinas/metabolismo , Fator de Crescimento Transformador beta/genética , Linfócitos T Reguladores , Doenças Autoimunes/patologia , Neoplasias/patologia
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612414

RESUMO

Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1ß, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1ß, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1ß and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.


Assuntos
Dor Crônica , Lúpus Eritematoso Sistêmico , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Dor Crônica/tratamento farmacológico , Dor Crônica/etiologia , Interleucina-18 , Proteínas Quinases Ativadas por AMP , Ácido Glutâmico , Interleucina-1beta , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Analgésicos
3.
J Neuroinflammation ; 21(1): 89, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600510

RESUMO

BACKGROUND: Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE's pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice. METHODS: We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala. RESULTS: MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory. CONCLUSIONS: The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.


Assuntos
Interleucina-6 , Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Animais , Camundongos , Depressão , Gliose , Interleucina-6/genética , Transtornos da Memória/genética , Camundongos Endogâmicos MRL lpr
4.
J Cell Mol Med ; 28(7): e18190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494844

RESUMO

Systemic lupus erythematosus (SLE), a multifactorial autoimmune disease, can affect the brain and cause neuropsychiatric dysfunction, also named neuropsychiatric lupus (NPSLE). Microglial activation is observed in NPSLE patients. However, the mechanisms regulating microglia-mediated neurotoxicity in NPSLE remain elusive. Here, we showed that M1-like proinflammatory cytokine levels were increased in the cerebrospinal fluid (CSF) of SLE patients, especially those with neuropsychiatric symptoms. We also demonstrated that MRL/lpr lupus mice developed anxiety-like behaviours and cognitive deficits in the early and active phases of lupus, respectively. An increase in microglial number was associated with upregulation of proinflammatory cytokines in the MRL/lpr mouse brain. RNA sequencing revealed that genes associated with phagocytosis and M1 polarization were upregulated in microglia from lupus mice. Functionally, activated microglia induced synaptic stripping in vivo and promoted neuronal death in vitro. Finally, tofacitinib ameliorated neuropsychiatric disorders in MRL/lpr mice, as evidenced by reductions in microglial number and synaptic/neuronal loss and alleviation of behavioural abnormalities. Thus, our results indicated that classically activated (M1) microglia play a crucial role in NPSLE pathogenesis. Minocycline and tofacitinib were found to alleviate NPSLE by inhibiting micrglial activation, providing a promising therapeutic strategy.


Assuntos
Lúpus Eritematoso Sistêmico , Vasculite Associada ao Lúpus do Sistema Nervoso Central , Humanos , Camundongos , Animais , Microglia , Depressão/tratamento farmacológico , Camundongos Endogâmicos MRL lpr , Encéfalo , Lúpus Eritematoso Sistêmico/genética , Citocinas
5.
Clin Exp Rheumatol ; 42(3): 658-665, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436267

RESUMO

OBJECTIVES: Several therapeutic agents have been developed and used for the clinical treatment of systemic lupus erythematosus (SLE). In cases where SLE is accompanied by severe organ failures, such as neuropsychiatric lupus erythematosus (NPSLE) and acute onset of lupus nephritis, the use of potent immunosuppressive drugs, such as cyclophosphamide, is necessary. However, potent immunosuppressive drugs are known to increase infection risks. Thus, the development of therapeutic agents with novel mechanisms is urgently required. Previously, we reported that treatment with lysophosphatidic acid (LPA) prevents depression-like behaviours by suppressing microglial activation in MRL/lpr mice. In this study, we examined whether the treatment with LPA improves glomerulonephritis by affecting systemic immunity in MRL/lpr mice. METHODS: Eighteen-week-old MRL/lpr mice were treated with a vehicle or LPA for 3 weeks. After treatment, the glomerular inflammation and damage parameters were compared between the 2 groups. Moreover, we examined the effects of LPA on immune cells by flow cytometry using isolated splenocytes. RESULTS: LPA treatment in MRL/lpr mice significantly reduced the daily urinary albumin content and suppressed the CD68-positive cells and Periodic acid-Schiff (PAS)-positive areas in the glomeruli. The treatment also suppressed plasma anti-dsDNA antibodies and inflammatory cytokines in MRL/lpr mice. Although LPA did not significantly affect the total number of splenocytes, the treatment significantly reduced CD11b+Ly6G-Ly6C- cells (mature macrophages), as well as CD11b+Ly6G-Ly6C-CD68+ cells (activated mature macrophages). CONCLUSIONS: These results suggest that LPA may improve glomerulonephritis by suppressing macrophage activation in MRL/lpr mice.


Assuntos
Glomerulonefrite , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Lisofosfolipídeos , Animais , Camundongos , Modelos Animais de Doenças , Ativação de Macrófagos , Camundongos Endogâmicos MRL lpr , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/prevenção & controle , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/prevenção & controle , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico
6.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429401

RESUMO

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Assuntos
Calgranulina A , Calgranulina B , Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Animais , Camundongos , Células Dendríticas/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
7.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471722

RESUMO

OBJECTIVE: Celastrol is a bioactive constituent extracted from Tripterygium wilfordii (thunder god vine). It has been demonstrated to have a therapeutic effect on experimental disease models for chronic inflammatory and immune disorders. In the present study, we investigated whether and how celastrol exerts a regulatory effect on the autoimmune response in MRL/lpr mice. METHODS: We performed an in vivo study to determine the therapeutic effects of celastrol in MRL/lpr mice and then further investigated the underlying mechanism of celastrol in the regulation of the autoimmune response in MRL/lpr mice. RESULTS: Celastrol showed a therapeutic effect in MRL/lpr mice by preventing the enlargement of the spleen and lymph nodes, alleviating renal injury, and reducing the levels of ANA and anti-double-stranded DNA antibodies. Furthermore, celastrol suppressed the in vivo inflammatory response in MRL/lpr mice by reducing the serum levels of multiple cytokines, including interleukin (IL)-6, tumour necrosis factor (TNF) and interferon (IFN)-γ, and the production of multiple antibody subsets, including total IgG, IgG1 and IgG2b. In vitro, celastrol reduced anti-CD3 antibody stimulation-induced T helper 1 and TNF-producing cells in CD4+ T cells of MRL/lpr mice. In addition, celastrol significantly affected B cell differentiation and prevented the generation of plasma cells from B cells in MRL/lpr mice by reducing the frequency of activated and germinal centre B cells. Celastrol treatment also affected T cell differentiation and significantly reduced central memory T cell frequencies in MRL/lpr mice. Importantly, celastrol treatment specifically promoted apoptosis of CD138+ but not CD138- T cells to suppress autoimmune T cell accumulation in MRL/lpr mice. CONCLUSIONS: Celastrol exerted therapeutic effects on lupus by specifically promoting apoptosis of autoimmune T cells and preventing the progression of autoimmune response.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Triterpenos Pentacíclicos , Camundongos , Animais , Humanos , Camundongos Endogâmicos MRL lpr , Apoptose , Imunoglobulina G
8.
Arthritis Res Ther ; 26(1): 64, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459604

RESUMO

BACKGROUND: Lupus nephritis (LN) is the most common complication of systemic lupus erythematosus (SLE). The limited treatment options for LN increase the economic burdens on patients. Because fibrotic progression leads to irreversible renal damage in LN patients and further progresses to chronic kidney disease (CKD) and the end stage of renal disease (ESRD), developing new targets to prevent LN fibrotic progression could lead to a feasible treatment strategy for LN patients. METHODS: In this study, we examined YAP activation and LATS2 downregulation in LN kidney biopsy samples (LN: n = 8, normal: n = 2) and lupus-prone MRL/lpr mice (n = 8 for each disease stage). The function of LATS2 was further investigated by in situ injection of Ad-LATS2 into mice with LN (n = 6 mice per group). We examined the role of SIAH2-LATS2 regulation by IP-MS and co-IP, and the protective effect of the SIAH2 inhibitor was investigated in mice with LN. RESULTS: Restoring LATS2 by an adenovirus in vivo alleviated renal fibrotic damage in mice with LN. Moreover, we found that LATS2 was degraded by a K48 ubiquitination-proteasome pathway mediated by SIAH2 and promoted YAP activation to worsen fibrosis progression in LN. The H150 region of the substrate binding domain (SBD) is an important site for SIAH2-LATS2 binding. The SIAH2-specific inhibitor vitamin K3 protected against LN-associated fibrotic damage in vivo. CONCLUSION: In summary, we identified the SIAH2-LATS2 axis as an attractive intervention target in LN to alter the resistance to fibrosis.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Humanos , Camundongos , Animais , Nefrite Lúpica/metabolismo , Vitamina K 3 , Camundongos Endogâmicos MRL lpr , Rim/patologia , Lúpus Eritematoso Sistêmico/patologia , Fibrose , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor
9.
Autoimmunity ; 57(1): 2319209, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38389171

RESUMO

Autoimmune diseases (AIDs) alter the placental immune environment leading to fetal loss. This study investigated the effects of AIDs on pregnancy and the placenta in AID-prone MRL/MpJ-Faslpr/lpr mice and wild-type MRL/MpJ, which were mated with male MRL/MpJ and MRL/MpJ-Faslpr/lpr at five months and defined as moLpr and moMpJ, respectively. AID indices (spleen weight and serum autoantibody levels) and fertility status (number and size of fetuses, morphology, and comprehensive gene expression of placentas) were evaluated on gestational day 15.5. Both strains showed equivalent fertility, but moLpr showed lighter placentas and fetuses than moMpJ, and decreased fertility with AID severity. moLpr placentas had a higher number of T cells, higher expression of genes associated with T helper 2 and T follicular helper functions, and altered expression of genes (Krt15, Slc7a3, Sprr2a3) that significantly regulate pregnancy or immunity. The gene expression of T cell migration-associated chemokines (Ccl5, Cxcl9) was significantly increased in moLpr placentas, and CCL5 and CXCL9 were detected in moLpr placentas, particularly in T cells and placenta-component cells, respectively. Thus, AID altered placental morphofunction and fertility in mice; however, fertility was maintained at the examined time points. This study enhances our understanding of placental alterations and gestational risk due to AIDs.


Assuntos
Doenças Autoimunes , Placenta , Gravidez , Camundongos , Feminino , Masculino , Animais , Camundongos Endogâmicos MRL lpr , Placenta/metabolismo , Linfócitos T , Fertilidade , Sistemas de Transporte de Aminoácidos Básicos
10.
Autoimmunity ; 57(1): 2319207, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404066

RESUMO

Objective: Todetect the abnormal distribution of B-lymphocytes between peripheral and bone marrow (BM) compartments and explore the mechanism of abnormal chemotaxis of B-lymphocytes in lupus subjects. Methods: The proportions of CXC chemokine receptor (CXCR)4+ B cells and CFDA-labeled MRL/lpr-derived B cells were detected by flow cytometry. The levels of CXC chemokine ligand (CXCL)12in peripheral blood (PB)were measured by ELISA. The migrated B cells to osteoblasts (OBs) was measured by transwell migration assay. The relative spatial position of B cells, OBs and CXCL12 was presented by Immunofluorescence assay. Results: Firstly, we found that the percentage of CXCR4+ B cells was lower in PB and higher in the BM from both MRL/lpr mice and patientswith Systemic lupus erythematosus (SLE). Secondly, OBs from MRL/lpr mice produced more CXCL12 than that from C57BL/6 mice. Besides, MRL/lpr-derived OBs demonstrated more potent chemotactic ability toward B-lymphocytes than control OBs by vitro an vivo. Additionally, more B-lymphocytes were found to co-localize with OBs within the periosteal zone of bone in MRL/lpr mice. Lastly, the percentages of CXCR4+B cells were found to be negatively correlated with serum Immunoglobulin (Ig) G concentration, moreover, BM CXCL12 levels were found to be positively correlated with SLE disease activity index Score and negatively correlated with serum Complement3 (C3) concentration. Conclusions: our results indicated that there is a shifted distribution of B-lymphocytes between BM and peripheral compartments in both SLE patients and MRL/lpr mice. Besides, the up-regulated levels of CXCL12 in OBs was indicated to contribute to the enhanced chemotactic migration and anchorage of B-lymphocytes to OBs.


Assuntos
Medula Óssea , Quimiocina CXCL12 , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Medula Óssea/metabolismo , Quimiocina CXCL12/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Osteoblastos/metabolismo
11.
Front Immunol ; 15: 1359534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352866

RESUMO

Introduction: Leaky gut has been linked to autoimmune disorders including lupus. We previously reported upregulation of anti-flagellin antibodies in the blood of lupus patients and lupus-prone mice, which led to our hypothesis that a leaky gut drives lupus through bacterial flagellin-mediated activation of toll-like receptor 5 (TLR5). Methods: We created MRL/lpr mice with global Tlr5 deletion through CRISPR/Cas9 and investigated lupus-like disease in these mice. Result: Contrary to our hypothesis that the deletion of Tlr5 would attenuate lupus, our results showed exacerbation of lupus with Tlr5 deficiency in female MRL/lpr mice. Remarkably higher levels of proteinuria were observed in Tlr5 -/- MRL/lpr mice suggesting aggravated glomerulonephritis. Histopathological analysis confirmed this result, and Tlr5 deletion significantly increased the deposition of IgG and complement C3 in the glomeruli. In addition, Tlr5 deficiency significantly increased renal infiltration of Th17 and activated cDC1 cells. Splenomegaly and lymphadenopathy were also aggravated in Tlr5-/- MRL/lpr mice suggesting impact on lymphoproliferation. In the spleen, significant decreased frequencies of regulatory lymphocytes and increased germinal centers were observed with Tlr5 deletion. Notably, Tlr5 deficiency did not change host metabolism or the existing leaky gut; however, it significantly reshaped the fecal microbiota. Conclusion: Global deletion of Tlr5 exacerbates lupus-like disease in MRL/lpr mice. Future studies will elucidate the underlying mechanisms by which Tlr5 deficiency modulates host-microbiota interactions to exacerbate lupus.


Assuntos
Glomerulonefrite , Receptor 5 Toll-Like , Animais , Feminino , Humanos , Camundongos , Glomerulonefrite/patologia , Rim/patologia , Camundongos Endogâmicos MRL lpr , Proteinúria
12.
J Proteome Res ; 23(4): 1150-1162, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38394376

RESUMO

This study aimed to identify potential therapeutic targets of artesunate in an MRL/lpr lupus nephritis mouse model by quantitative proteomics. We detected serum autoimmune markers and proteinuria in 40 female mice that were divided into 4 groups (n = 10): normal C57BL/6 control group; untreated MRL/lpr lupus; 9 mg/kg/day prednisone positive control MRL/lpr lupus; and 15 mg/kg/day artesunate-treated MRL/lpr lupus groups. Renal pathology in the untreated MRL/lpr lupus and artesunate groups was examined by Periodic acid-Schiff (PAS) staining. Artesunate treatment in lupus mice decreased serum autoantibody levels and proteinuria while alleviating lupus nephritis pathology. Through tandem mass tag-tandem mass spectrometry (TMT-MS/MS) analyses, differentially expressed proteins were identified in the artesunate group, and subsequent functional prediction suggested associations with antigen presentation, apoptosis, and immune regulation. Data are available via ProteomeXchange with the identifier PXD046815. Parallel reaction monitoring (PRM) analysis of the top 19 selected proteins confirmed the TMT-MS/MS results. Immunohistochemistry, immunofluorescence, and Western blotting of an enriched protein from PRM analysis, cathepsin S, linked to antigen presentation, highlighted its upregulation in the untreated MRL/lpr lupus group and downregulation following artesunate treatment. This study suggests that artesunate holds potential as a therapeutic agent for lupus nephritis, with cathepsin S identified as a potential target.


Assuntos
Nefrite Lúpica , Feminino , Animais , Camundongos , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/patologia , Artesunato/uso terapêutico , Camundongos Endogâmicos MRL lpr , Proteômica , Espectrometria de Massas em Tandem , Camundongos Endogâmicos C57BL , Rim/metabolismo , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Proteinúria/patologia , Catepsinas/uso terapêutico
13.
Drug Dev Res ; 85(1): e22151, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349254

RESUMO

Drug repurposing is used to propose new therapeutic perspectives. Here, we introduce "Drug Upgrade", that is, characterizing the mode of action of an old drug to generate new chemical entities and new therapeutics. We proposed a novel methodology covering target identification to pharmacology validation. As an old drug, we chose hydroxychloroquine (HCQ) for its well-documented clinical efficacy in lupus and its side effect, retinal toxicity. Using the Nematic Protein Organization Technique (NPOT®) followed by liquid chromatography-tandem mass spectrometry analyses, we identified myeloperoxidase (MPO) and alpha-crystallin ß chain (CRYAB) as primary and secondary targets to HCQ from lupus patients' peripheral blood mononuclear cells (PBMCs) and isolated human retinas. Surface plasmon resonance (SPR) and enzymatic assays confirmed the interaction of HCQ with MPO and CRYAB. We synthesized INS-072 a novel analog of HCQ that increased affinity for MPO and decreased binding to CRYAB compared to HCQ. INS-072 delayed cutaneous eruption significantly compared to HCQ in the murine MRL/lpr model of spontaneous lupus and prevents immune complex vasculitis in mice. In addition, long-term HCQ treatment caused retinal toxicity in mice, unlike INS-072. Our study illustrates a method of drug development, where new applications or improvements can be explored by fully characterizing the drug's mode of action.


Assuntos
Desenvolvimento de Medicamentos , Leucócitos Mononucleares , Humanos , Animais , Camundongos , Camundongos Endogâmicos MRL lpr , Reposicionamento de Medicamentos , Hidroxicloroquina
14.
Adv Sci (Weinh) ; 11(11): e2306961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192168

RESUMO

Due to the limited capacity of mammals to regenerate complex tissues, researchers have worked to understand the mechanisms of tissue regeneration in organisms that maintain that capacity. One example is the MRL/MpJ mouse strain with unique regenerative capacity in ear pinnae that is absent from other strains, such as the common C57BL/6 strain. The MRL/MpJ mouse has also been associated with an autoimmune phenotype even in the absence of the mutant Fas gene described in its parent strain MRL/lpr. Due to these findings, the differences between the responses of MRL/MpJ versus C57BL/6 strain are evaluated in volumetric muscle injury and subsequent material implantation. One salient feature of the MRL/MpJ response to injury is robust adipogenesis within the muscle. This is associated with a decrease in M2-like polarization in response to biologically derived extracellular matrix scaffolds. In pro-fibrotic materials, such as polyethylene, there are fewer foreign body giant cells in the MRL/MpJ mice. As there are reports of both positive and negative influences of adipose tissue and adipogenesis on wound healing, this model can provide an important lens to investigate the interplay between stem cells, adipose tissue, and immune responses in trauma and material implantation.


Assuntos
Músculos , Cicatrização , Camundongos , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Modelos Animais de Doenças , Cicatrização/fisiologia , Mamíferos
15.
Immun Inflamm Dis ; 12(1): e1168, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270299

RESUMO

BACKGROUND: The vast majority of systemic lupus erythematosus patients develop lupus nephritis (LN) with severe renal manifestations, such as inflammatory responses, oxidative stress, and fibrosis. The purpose of this research was to investigate Cordyceps cicadae as a potential therapeutic target for treating inflammatory responses, oxidative stress, and fibrosis in LN. METHODS: The effects of C. cicadae on lupus symptoms in mice with LN were determined. MRL/lpr mice were treated with C. cicadae (4 g/kg/day, i.e., CC group, n = 8) or an equal volume of saline (model group, n = 8), and MRL/MP mice were treated with an equal volume of saline (control group, n = 8). Renal function indices, renal pathology, inflammatory markers, oxidative stress markers, and renal interstitial fibrosis levels were evaluated after C. cicadae treatment. Western blot analysis was performed to investigate the effect of C. cicadae on the expression of fibrosis biomarkers and the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)-mediated autophagy pathway in the renal tissues of mice. RESULTS: C. cicadae ameliorated renal lesions, the inflammatory response, and oxidative stress damage in MRL/lpr mice. C. cicadae treatment inhibited renal fibrosis (16.31 ± 4.16 vs. 31.25 ± 5.61) and downregulated the expression of the fibrosis biomarkers alpha-smooth muscle actin, fibronectin, and collagen I (COL I) in the kidneys of MRL/lpr mice. In addition, further research showed that the PI3K/mTOR-mediated autophagy pathway was involved in C. cicadae-mediated effects on renal fibrosis in MRL/lpr mice. Furthermore, the therapeutic effect of C. cicadae on repairing renal fibrosis and damage in MRL/lpr mice was abolished by the PI3K agonist 740 Y-P. CONCLUSIONS: The findings of the present research showed that C. cicadae could alleviate inflammatory responses, oxidative stress, and fibrosis in the renal tissues of mice with LN by targeting the PI3K/mTOR-mediated autophagy pathway.


Assuntos
Cordyceps , Nefrite Lúpica , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Autofagia , Biomarcadores , Fibrose , Rim , Nefrite Lúpica/tratamento farmacológico , Camundongos Endogâmicos MRL lpr , Estresse Oxidativo , Serina-Treonina Quinases TOR
16.
Kidney Int ; 105(4): 759-774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296028

RESUMO

Lupus nephritis (LN) is one of the most severe manifestations of systemic lupus erythematosus (SLE), but its mechanism of onset remains unclear. Since impaired mitophagy has been implicated in multiple organs in SLE, we hypothesized that mitophagy dysfunction is critical in the development of LN and that pharmacologically targeting mitophagy would ameliorate this disease. Therefore, lupus-prone MRL/MpJ-Faslpr (MRL/lpr) and NZBWF1/J mice were treated with a novel mitophagy inducer, UMI-77, during their onset of LN. This treatment effectively mitigated kidney inflammation and damage as assessed by histology and flow cytometry. Furthermore, dendritic cell (DC)-T-cell coculture assay indicated that UMI-77 treatment attenuated DC function that would drive T-cell proliferation but did not directly influence the potent T-cell proliferation in lupus mice. UMI-77 also restored mitochondrial function and attenuated proinflammatory phenotypes in lupus DCs. Adoptive transfer of DCs from MRL/lpr mice augmented serum anti-dsDNA IgG, urine protein and T-cell infiltration of the kidney in MRL/MpJ mice, which could be prevented by either treating lupus donors in vivo or lupus DCs directly with UMI-77. UMI-77 also restored mitochondrial function in myeloid cells from patients with LN in vitro as evidenced by increased ATP levels. Thus, enhancing mitophagy in SLE restrains autoimmunity and limits kidney inflammation for LN development. Hence, our findings suggest targeting mitophagy as a tangible pathway to treat LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Sulfonamidas , Tioglicolatos , Humanos , Camundongos , Animais , Nefrite Lúpica/patologia , Autoantígenos , Mitofagia , Camundongos Endogâmicos MRL lpr , Rim/patologia , Células Mieloides , Inflamação/patologia
17.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38186000

RESUMO

Accumulated evidence implicates lipid peroxidation as a key mechanism contributing to the pathogenesis of lupus nephritis (LN). Ferroptosis is a specialized form of cell death induced by loss or deficient activity of the glutathione peroxidase 4 (GPX4) and decreased clearance of polyunsaturated fatty acid hydroperoxides. STING production may lead to the occurrence of intracellular lipid peroxidation, ultimately triggering ferroptosis, but it has not been clarified whether STING can aggravate LN via ferroptosis. The adjacent normal kidney tissues from renal cell carcinoma and biopsied kidney tissue samples from LN patients were used for research, and the expression of STING protein in kidney tissue was detected by immunohistochemistry and RT-qPCR. MRL/lpr mice, a model of LN, were used to detect STING expression in kidney tissue. STING expression in the kidney tissue of MRL/lpr mice was knocked down by sh-STING-AAV, and then levels of 4-HNE, MDA, ROS, iron ion, blood urea nitrogen and serum creatinine, IL-6, IL-1ß, and TNF-α, and the protein expression of STING, TBK1, NF-κB, GPX4, ACSL4, and SLC7A11 were subsequently examined. STING was elevated in the kidney tissue of LN patients and MRL/lpr mice. Compared with the MRL/lpr group, liproxstatin-1 or ferrostatin-1 treatment alleviated ferroptosis-related indicators 4-HNE, MDA, ROS, iron ion release, and GPX4 and SLC7A1 expression, whereas the treatment enhanced ACSL4 expression. STING interference observably decreased 4-HNE, ROS, MDA, iron ion, STING, and ACSL4 levels, and increased GPX4 and SLC7A11 expression in MRL/lpr mice kidney tissues. Besides, inhibition of STING reduced kidney tissue damage and inflammatory cell infiltration in MRL/lpr mice, and levels of serum creatinine, blood urea nitrogen, serum anti-double-stranded DNA antibody, inflammatory factors IL-6, IL-1ß, and TNF-α, as well as phosphorylation of NF-κB were all significantly decreased in MRL/lpr mice. TBK1 over expression reversed the impact of STING inhibition on ferroptosis and inflammatory response. STING contributed to ferroptosis and inflammatory response by activating the TBK1/NF-κB pathway, suggesting that STING may be a potent therapeutic target in LN.


Assuntos
Ferroptose , Nefrite Lúpica , Animais , Humanos , Camundongos , Creatinina , Ferroptose/genética , Interleucina-6 , Ferro , Nefrite Lúpica/genética , Camundongos Endogâmicos MRL lpr , NF-kappa B/genética , Proteínas Serina-Treonina Quinases/genética , Espécies Reativas de Oxigênio , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa , Regulação para Cima
18.
J Nutr ; 154(3): 1039-1049, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224737

RESUMO

BACKGROUND: Certain foods can trigger flares in patients with systemic lupus erythematosus. Lectins in edible plants have been reported to increase inflammation. OBJECTIVE: This study aimed to determine the effects of 1-time intake of soybean agglutinin (SBA) on the gut microbiota and immune response in lupus-prone MRL/MpJ (MRL)/lpr mice. METHODS: MRL/MpJ-Faslpr/J (MRL/lpr) and MRL mice were randomly assigned into 4 groups (8 mice/group): MRL mice + phosphate-buffered saline (PBS) (CON), MRL mice + SBA (CS), MRL/lpr mice + PBS (LPR), and MRL/lpr + SBA (LS). PBS and SBA were orally administered at 16 wk of age, and all mice were killed 24 h after oral challenge. The disease phenotype, levels of proinflammatory cytokines, and composition of the intestinal microbiota were determined. RESULTS: Interferon-gamma (IFN-γ) in the serum was significantly higher, whereas the level of serum IL-10 was significantly lower in LS mice than in LPR mice [fold change (FC) = 1.31 and FC = 0.36, respectively]. The expression levels of IL-6 and TNF-α in the spleen of LS mice were significantly higher than those in LPR mice (FC = 1.66 and FC = 1.96, respectively). The expression levels of IL-6, TNF-α, and IL-1ß in the kidney were also significantly higher in LS mice than in LPR mice (FC = 2.89, FC = 3.78, and FC = 2.02, respectively). The relative abundances of Erysipelotrichaceae and Turicibacter in LS mice were significantly higher than those in LPR mice (FC = 1.73 and FC = 1.74, respectively). The percentage of Breg cells in the mesenteric lymph nodes was significantly lower in LS mice than in LPR mice (FC = 0.53) (P < 0.05). No change was found between SBA treatment or not in the control (MRL) mice. CONCLUSIONS: One-time intake of SBA can promote the secretion of proinflammatory cytokines, downregulate Breg cells, and alter the intestinal flora in MRL/lpr mice within 24 h of oral challenge, which may contribute to exacerbation of lupus.


Assuntos
Microbioma Gastrointestinal , Fito-Hemaglutininas , Proteínas de Soja , Humanos , Camundongos , Animais , Interleucina-6 , Camundongos Endogâmicos MRL lpr , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Inflamação
19.
Int Immunopharmacol ; 126: 111256, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992447

RESUMO

The inflammatory response runs through the whole pathogenesis of systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSC) have exhibited a positive therapeutic effect on SLE. This study aimed to ascertain the pathogenic role of inflammasome activation in SLE and whether MSC alleviate SLE by suppressing it. The results showed that the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome was activated in macrophages from MRL/lpr mice and patients with SLE, correlating with disease activity. After MSC transplantation, the disease severity in MRL/lpr mice was alleviated, and NLRP3 inflammasome activation was inhibited with decreased levels of NLRP3 and caspase-1 in macrophages. Furthermore, lower serum levels of interleukin (IL)-1ß and IL-18 were observed in patients with SLE who underwent MSC transplantation. In vitro and in vivo studies indicated that MSC suppressed NLRP3 inflammasome activation by inhibiting Pim-1 expression. The findings provide an updated view of inflammasome signaling in SLE. Additionally, MSC ameliorated SLE by inhibiting NLRP3 inflammasome activation, implying a possible molecular mechanism for the clinical application of MSC and a potential therapeutic target in patients with SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos MRL lpr , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-pim-1
20.
J Pharmacol Exp Ther ; 388(3): 751-764, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673681

RESUMO

Toll-like receptor 7 (TLR7) and TLR8 are single-stranded RNA-sensing endosomal pattern recognition receptors that evolved to defend against viral infections. However, aberrant TLR7/8 activation by endogenous ligands has been implicated in the pathogenesis of autoimmune diseases including systemic lupus erythematosus. TLR activation and type I interferon (IFN) were shown recently to impart resistance to glucocorticoids (GC), which are part of the standard of care for multiple autoimmune diseases. While GCs are effective, a plethora of undesirable effects limit their use. New treatment approaches that allow for the use of lower and safer doses of GCs would be highly beneficial. Herein, we report that a dual TLR7/8 inhibitor (TLR7/8i) increases the effectiveness of GCs in inflammatory settings. Human peripheral blood mononuclear cell studies revealed increased GC sensitivity in the presence of TLR7/8i for reducing inflammatory cytokine production, a synergistic effect that was most pronounced in myeloid cells, particularly monocytes. Gene expression analysis by NanoString and single-cell RNA sequencing revealed that myeloid cells were substantially impacted by combining low-dose TLR7/8i and GC, as evidenced by the effects on nuclear factor-kappa B-regulated cytokines and GC-response genes, although IFNs were affected to a smaller degree. Low dose of TLR7/8i plus GC was more efficacious then either agent alone in the MRL/lpr mouse model of lupus, with improved proteinuria and survival. Overall, our findings indicate a GC-sparing potential for TLR7/8i compounds, suggesting TLR7/8i may offer a new strategy for the treatment of autoimmune diseases. SIGNIFICANCE STATEMENT: Some features of autoimmune diseases may be resistant to glucocorticoids, mediated at least in part by toll-like receptor (TLR) activation, necessitating higher doses that are associated with considerable toxicities. We demonstrate that TLR7/8 inhibition and glucocorticoids work synergistically to reduce inflammation in a cell-type specific manner and suppress disease in a mouse model of lupus. TLR7/8 inhibition is a promising strategy for the treatment of autoimmune diseases and has glucocorticoid-sparing potential.


Assuntos
Lúpus Eritematoso Sistêmico , Receptor 7 Toll-Like , Camundongos , Animais , Humanos , Receptor 7 Toll-Like/metabolismo , Glucocorticoides/farmacologia , Leucócitos Mononucleares/metabolismo , Camundongos Endogâmicos MRL lpr , Receptores Toll-Like , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...